Fundamental parallel program issues to
improve parallel computations

B. Lecussan, O. Poitou

Supaero and ONERA/DTIM, 10. av. E. Belin, 31055 Toulouse cedex, FRANCFE

{lecussan, poitou}@cert.fr, http://www.supaero.fr/lecussan

Abstract

The parallel techniques to improve computer performances form the common base
to the evolution of the processors and the modern information processing systems.
Performance improvement of a multiprocessor led to consider two complementary
actions to face latencies; first is latencies reduction by mechanisms of replication
which will involve requirements in memory bandwidth, data coherence and con-
sistency protocols, then is residual latencies tolerance by overlapping techniques of
computation and communications. The computation/communication ratio is the es-
sential parameter of the effectiveness of the multiprocessor computers; near future
technologies makes it possible to carry out locally 10.000 sequential instructions
during the necessary time to send the first bit of a message from a transmitter to-
wards a receiver. It is probable that the gap between the cycle time of the processor
and the memory cycle continue to widen then requiring techniques to decrease and
tolerate latencies of memory accesses; consequently the pressure is put on the band-
width of the memory hierarchy. The programmer must know the consequences of
the parallel paradigms that it uses to distribute computation on a set of processors
(or on a set of clusters of processors) and to ensure himself (herself) the parallel
program efficiency. Whatever the technological development, the implementation
models of parallel programming will remain confronted with the problems of the
data accesses, the execution scheduling of the various computations and the syn-
chronisation techniques. This paper will discuss the fundamental parallel program
issues to improve parallel computations and presents an algorithmic technique that
leads to a natural memory distribution among the computing nodes implying better
locality and a lot less communications compared to conventional approaches.

1 Introduction

The parallel techniques to improve the computer performances form the com-
mon base to the evolution of the processors and the modern information

Preprint submitted to Elsevier Science 26 November 2001

processing systems. The parallelism is found inside the processor, which is able
simultaneously to treat on average 2.5 instructions per clock cycle (1Ghz) by
exploiting several functional units. It is the domain of the processors designers
and compilers manufacturers to generate codes exploiting these resources as
well as possible. The mother boards of today computers contain two or four
processors which can be managed effectively by a multithreaded operating
systems to obtain an acceptable efficiency of the parallel computer; paral-
lelism is then, essentially, with the responsibility of the operating system. The
systems with more than eight processors and up to 48 are currently present
in all high performance servers, for computations or data management. The
management of this parallelism is then the responsibility of the user who must
produce an effective parallel program to exploit these resources as well as pos-
sible. To understand the key factors of a parallel application performance on
a multiprocessor we have to examine the time spent in each component of the
computer to carry out several threads of instructions, namely the access to
the data of the memory hierarchy and the co-ordination of the activities with
the other processors. The execution time (1) of a sequential program can be
summarised by the following formula:

Ts=NxCPI xte+Tam (1)

N the total number of instructions executed by the processor
CPI the average number of Cycle Per Instructions

Tc the processor cycle time

Tam memory hierarchy access time

On a parallel architecture, the execution time (2) includes five parameters,
which are:

Ti=NixCPIixtc the sequential computation time inside the i-th processor
Opar(i) the overhead introduced by parallel tasks

Tam(i) the access time to local memory hierarchy

RTam(i) the access time to remote memory hierarchy

Sync(i) the synchronisation overhead between parallel tasks

Then, the computation speed-up of the parallel program (p) obtained by a
multiprocessor is:

Ts
max (T + Opar(i) + Tam(¢) + Rtam(i) + Sync(i))

(2)

Speed —up(p) =

The performance improvement for the single processor consists in reducing
the access time to the hierarchy memory (Tam) and in improving the value
of CPI by bringing more than one instruction by cycle in the processor (two,
four even eight instructions per cycle); the effectiveness of a multiprocessor is
more complex, the challenge covering three aspects:

(1) characteristics of the bare machine leading to a minimum computation
granularity, the cost of synchronisation primitives, the memory band-
width, the data coherence and consistence protocol management

(2) characteristics of the application summarised by the frequency of the
exchanges, the load balancing on each processor

(3) definition of an analytical model which makes it possible for the program-
mer to predict the performances of the parallel application.[1]

The programmer must know the consequences of the parallel paradigms that
it uses to distribute computation on a set of processors and to ensure himself
(herself) of the parallel program efficiency. In shared memory this is difficult
because all costs are masked, in particular data coherence and consistency
protocol costs that can induce very significant latencies. In distributed mem-
ory, the problem is simpler but a remote access cost is such as the parallel
program must produce the least possible number of messages, especially short
messages.

For multiprocessors, the initial model PRAM becomes insufficient because it
does not allow interacting with performance. The speed-up formula (2) shows
that the output of the parallel machine is related to parameters that it is ad-
visable to take into account at application design time and when writing the
parallel program. The value of Opar(i) is incompressible and corresponds to
the additional code with the sequential program to make it parallel; Tam(i)
contains the latency of the access to the local data, Rtam(i) represents the la-
tency of the access through a communication network and Sync(i) contains the
synchronisation costs so that the parallel application is semantically correct.
Performance improvement of a multiprocessor led to consider two complemen-
tary actions to face latencies:

(1) Latencies reduction by mechanisms of replication which will involve re-
quirements in memory bandwidth and data coherence and consistency
protocols

(2) Residual latencies tolerance by overlapping techniques of computation
and communications which will involve exchanges of memory blocks with
zero copy, anticipations of communication and switches to parallel threads

[2].
The latency reduction can take place on three levels:

e Reduction in the access times to each level of the hierarchy memory and
the communication
The cache controller must answer very quickly to detect a cache miss and to
reduce the latency of access at the higher level. The objective is to minimise
the following formula:

Tam = Hitrate x Hittime 4 (1 — Hitrate) x Misstime (3)

For first level cache with hit ratio higher than 95% the Miss time may be
20 times the Hit time and for lower-level cache it will still be an order of
magnitude. This encourages the designer to increase the hit ratio in partic-
ular by increasing the size of the lines of cache and to improve data cache
locality. The network interface must be strongly coupled with the node of
computation and be designed to format, deliver and manage quickly the
transactions on the network. Time to transfer N bytes from an emitter (E)
towards a receiver (R) has four components:

T(n)E_R = Overhead
+ RoutingDelay
+ ChannelOccupancy
+ ContentionDelay (4)

Overhead is the time taken by the processor to deposit a message in the
communication interface.

Routing is the time to transmit the first bit of a message towards a receiver.
Channel Occupancy is a function of the communication medium, of the
number of control information inside a packed and of the time to apply
control signals to carry out an exchange between two switches.

Contention Delay expresses that one message may collide with others and
contend for resources.

With the three first parameters the network can be seen like a simple
pipeline with a cost of initialisation, a depth and a processing time per stage.
The strategies of commutation and routing change the effective structure
of the pipeline whereas topology, the bandwidth of each link and the frag-
mentation of the message determine the depth and time by stage. However
a message can enter in collision with another and require shared resources
(buffers). Application then represents an additional overhead that ensures
that at every moment a channel is occupied by one and only one message.
The application adds times to the basic routing time.

Structuring the system to reduce the frequency of the high latency accesses
The cache mechanism is the basic component to bring closer the data of the
operator who consumes them. This mechanism exploits the space locality
and the temporal locality of the programs. The localisation of the data is
then uncoupled from its physical address; this architecture authorises a mi-
gration of the data adapted to a management of the dynamic loads of a set
of processes.

Structuring the application to reduce the frequency of the high latency
accesses

This point is the responsibility of the application designer: it consists to
break up and allocate computation with the processor in order to reduce
the communications and to improve the space and temporal localities [2].

By example, dynamic memory allocation and data structures construction
as late as possible during the program computation is a way to be taken.
Development of this technique on cases studies is explained in this paper.
Part2 will present fundamental parallel program issues to improve parallel
computer speed-up, part 3 and part 4 describes two case studies based on
lazy construction of program data structures reporting basic results.

2 Fundamental parallel program design issues

The computation/communication ratio is the essential parameter of the ef-
fectiveness of multiprocessor computers; current technology makes it possible
to carry out locally 10.000 sequential instructions during the necessary time
to send the first bit of a message from a transmitter towards a receiver. The
restrictive factor of the formula (4) is the Overhead. Certain predict that this
value can pass to 20.000 quickly even 100.000 when the processors have several
hundreds of million transistors. In 10 years, the processor clock frequency was
multiplied by 10 and transistor number by microprocessor was multiplied by a
factor 30; on another side DRAM cycle time was only improved of a factor 2.
Thus, it is probable that the gap between the cycle time of the processor and
the memory cycle continue to widen then requiring techniques to decrease and
tolerate latencies of memory accesses; consequently the pressure is put
on the bandwidth of the hierarchy memory. The interconnection band-
width and the switches results in supporting exchanges with 1 Gigabits/s and
up to 10 Gigabits/s, the optical fibre having to impose like the major support
for high speed links, but these links are connected to I/O sub-systems which
become the bottlenecks of the multiprocessor. Whatever the technological de-
velopment, the implementation models of parallel programming will remain
confronted with the problems of the data accesses, the execution scheduling
of the various threads and the synchronisation techniques.

As the issue addressed by this paper is the efficiency of the distributed com-
puter, the main parameters to be evaluated are the load imbalance of the
parallel algorithm, the memory required by the solution on each processor
and the speed-up gained by the parallel computation.

Let the parallel computation time T, expressed by the following formula:
T, = maxt; (5)

where 1 indexes the set of computers and t; is the i-th computer computation
time.

The parallel computer efficiency E using p processors is:

F =

pxT,

where T, is the best sequential algorithm to solve the problem.

A minimum of the computation imbalance occurs when all computers complete
their work at the same time. In this case, this minimum occurs at:

T
par
Tmin — Lseq +

(7)

where Ty, and T, respectively are the non-parallel and the parallel part
of the computation time. This suggests an objective function to measure the
effectiveness of any candidate solution sto any instance of the load-balancing
problem. The quality of s can be measured by the ratio of imbalance that it
produces and can be expressed by the following formula:

Tp - Tmin
_— 8
Tmin ()

Load tmbalance =

The evaluation of E (6), then the evaluation of the Load Imbalance (8), and
the amount of required memory to implement the solution will demonstrate
the efficiency of the proposed solution.

At a coarse grain, the parallel algorithm behaviour is:
Part 1: Initialise data and initiate the parallel execution
Part 2: Distribute the whole computation

Part 3: Compute locally each task inside each processor
Part 4: Write the output result and end

Part 1 and Part 4 contribute to the Overhead (Opar) in formula (2). Part 2
and Part 3 are concerned by load balancing strategies and computation time
evaluations. So the formula (7) applied to the parallel algorithm decomposition
becomes:

TSpartS

Tmin — TpartZ + (9)

where T'S,445 1s the execution time of Part3 on a uniprocessor computer. This
formulation shows that, as the number of processors p increases, the efficiency

of the parallel computer is very sensitive to the value of T,,42. For example, the
efficiency of a computer with 100 processors drops to 0.5 if T,,.42 represents
only 1% of the total execution time. In this paper a solution to distribute
data is presented in order to reduce significantly the sequential part of the
algorithm.

3 Case study 1 : a raytrace algorithm

3.1 Raytracing oveview

Ray tracing is a computational technique that can perform wave simulation
at comparatively low costs. This technique can be applied in cases where the
frequency of the simulated wave can be adapted to the minimal object size.
Ray tracing has been used for years in various fields like image synthesis,
seismic simulation, radar reflections and others.

A first algorithm will be used to spot the issue raised by the parallel ray-
trace algorithm and will be referred to for the coming improved algorithm
evaluations. The image is uniformly split into as many blocks as computing
resources. The octree is entirely built at the beginning of the computation by
each node to avoid communication during this step. Fach node hence has the
entire model and voxelisation information in its local memory: so the com-
putation is achieved without communication. The memory requirement for
each node is the same as on the single node of a sequential computer. The
only positive aspect of this first trivial algorithm is that it does not need any
communication.

3.1.1 Improving load-balancing by a dynamic distribution of blocks

To deal with the irregularity of the raytrace algorithm, a first improvement is
to achieve a thinner static splitting of the image and a dynamic distribution

of blocks. The algorithm is:

o At the master mode : Let N be the number of processors

SplitLiimage(block size) // block_size is set to obtain a large number of blocks
for i=1..N Assign(a_-Block, node (i)) // Assignment of the first N blocks
while non_computed_block remains

Wait _for_a_job_termination

Assign(a_new_block, node (requester))
end while
for i=1..N Send(termination signal, node(i))

e At each slave node :

Wait _for_a_job(job)

while not_the_termination signal
Compute(job)
Send(job_termination, master_node)
Wait _for_a_job(job)

end while

This should improve the load balancing, but the local memory requirement
problem is not addressed yet.

3.1.2 Saving memory, reducing computation and improving locality : the lazy
raytrace

3.2 The lazy algorithm

At the beginning of a simulation, i.e. before the first ray is cast, the octree
is reduced to a single leaf voxel. The octree will be actually built during
the ray tracing process. Each time a ray hits a voxel, it is to be decided
whether the polygon description of the voxel is sufficient or not for an analytic
computation. If boundary condition is not reached, the intersection with all
child voxels along the ray path has to be computed. If the voxel is a leaf voxel,
it is evaluated in order to transform it into a node voxel. So, the lazy octree
is a potentially infinite tree. Contrary to method using a static octree, most
voxels actually built were hit at least once by a ray, and no useless voxel was
built. More detail on lazy construction of voxels could be found in [3].

Inside each processor, the algorithm is the following:

Propagate(rays)
for each ray
Intersection(ray,octree root)
if (intersection # nil) then
Apply Snell Descartes laws to determine secondary rays
if (secondary rays # nil) then
Propagate (secondary_rays)
end if
end if
end for
end Propagate

The algorithm of the lazy recursive function Intersection is:
Intersection(ray,octree_elt)

//First step: Actions on the octree element if it is a leafl
if is_a_leaf(octree_elt) then
if boundary_conditions(octree_elt) then //there is no need to explore deeper
if (object list(octree_elt)#nil) then // the element contains surfaces
Flag_as_terminal node(octree_elt)
else // the element contains no surface
Flag_as_empty(octree_elt)
end if
else //deeper exploration is necessary
Flag_as_node(octree_elt)
Create leaf sons(octree_elt)
end if
end if

// Second step: Action to take according to the flag of the element as it can no more be a leaf
case typeof(octree_elt)
empty: return(nil)
node: if is_a_terminal node then
compute_intersection;
else
return merge(
if hit_by_ray then Intersection(ray,son 1
if hit_by_ray then Intersection(ray,son 2

else nil,
else nil,

octree_elt
octree_elt
octree_elt) else nil,
else nil,
else nil,
else nil,
else nil,

else nil,

(
(
if hit_by_ray then Intersection(ray,son 3
if hit_by_ray then Intersection(ray,son 4(octree_elt
if hit_by_ray then Intersection(ray,son 5(octree_elt
if hit_by_ray then Intersection(ray,son 6
(
(

if hit_by ray then Intersection(ray,son 7

octree_elt
octree_elt

PAQENG =G -ARR -
e N N N N N N N’

if hit_by ray then Intersection(ray,son 8(octree_elt

end if
end case
end Intersection

This algorithm shows the following properties: first, a child node is evaluated
only if it contains necessary data for the computation; then, the node evalua-
tion results is definitively stored in the octree and will be reused for neighbour
ray computation. Thereby, the algorithm exploits spatial ray coherence.

The main drawback of the algorithm is the remaining data replication. To
reduce this undesirable replication, neighbour ray’s coherence hypothesis is

taken. It states that neighbour rays have a high probability to cross a lot
of common voxels and only few different voxels. A proximity support in the
assigned ray choice for each node is so achieved to minimise data replication
phenomenon. Nevertheless some rays assigned to different nodes may need
common voxel evaluation and generate data replication.

3.3 Lazy raytrace algorithm performance results

Results were obtained using 16 Sun Ultra 10 with 256 MB of memory inter-
connected by an Ethernet 100 Mb/s network. MPI1.1 was used to distribute
the computation. Benchmarks come from very well known images (Teapot12
and Tetra9) and proprietary scenes to extend computation complexity [Tab.1].

SCENE MODEL NB OF PICT. SEQUENTIAL TIMES

NAMES SIZE SURF. SIZE STANDARD | LAZY
TEAPOT 12 | 1.19 MB 9,408 2048X2048 220s 163s
TETRA 9 18.24 MB | 262,144 | 2048X2048 194s 155s
GENS 26.21 MB | 786,438 | 1024X1024 793s 201s
BIG_.GENS8 | 104.84 MB | 3,145,728 | 2048X2048 | mem overflow | 3,992s

Table 1
Test scenes overview

The local memory requirement is the first point where laziness has a significant
impact. The lazy version of the raytrace algorithm uses less memory as the non
lazy one; as the number of references to the memory hierarchy decreases the
total computation time decreases dramatically. Huge computation (3 millions
surfaces, 2K by 2K image) could not be computed on a single processor with
conventional data management but has been computed with the lazy version
of the raytrace algorithm using a computer with 256 MB of memory in about
one hour.

Efficiency is in the range [1..0.93] for small scene [Tab.2] as the number
of processors increases. For medium size image efficiency is in the range of
[1..0.61] and is always better with the lazy algorithm.

With the non lazy implementation of the raytrace algorithm each node has
the entire model and voxelisation data in its local memory; so the computa-
tion is achieved without communication but the local memory requirement is
constant and maximum whatever the number of nodes is. The measured ef-
ficiency of this algorithm shows that global computation time gets far higher
than desirable as the number of nodes increases showing an important load
imbalance between nodes [Tab.3].

10

EFFICIENCY NON LAZY LAZY
Nb of PE’s 2 4 8 16 2 4 8 16

TEAPOT 12 | 0.9 | 0.8 | 0.75] 0.6 | 0.98 | 0.97 | 0.95 | 0.93

TETRA 9 0.821 06 | 03 03] 09 |076)| 0.7 | 0.61

GENS 0.6 | 071]068|05]|097| 09 | 0.8]0.64

BIG_GENS Memory overflow 0.98 | 0.97 | 0.97 | 0.95

Table 2
Algorithm efficiencies (Eq.6)

LOAD IMBALANCE (in %) NON LAZY LAZY
Nb of PE’s 2 | 4 8 16 | 2 4 8 | 16
TEAPOT 12 15 122] 40 | 60 | 0.5 | 1.2 22|28
TETRA 9 15 1 60 | 220 | 240 | 11 | 40 | 42 | 52
GENS 60 |40 | 50 | 95 | 5 | 10 | 22 | 55
BIG_GENS Memory overflow 2 8 | 10 | 13
Table 3

Algorithm load imbalance ratio (eq.8)

The memory requirement decreasing rate is about 25% each time the number
of nodes doubles [Tab.4]. The memory is now distributed among the computing
nodes thanks to the laziness added to the base algorithm. On the GENS test
a memory saving can be observed with the sequential lazy computation; it
come from important useless parts of the octree that is evaluated by the classic
algorithm and not by the lazy algorithm. The speed-up obtained on the GENS8
test is equal to 15 with 16 processors and for the huge test BIG_.GENS is 31
with 32 processors and the memory is well distributed among each processor.

MEMORY NEEDS (MB) NON LAZY LAZY
Nb of PE’s 2 4 8 16 2 4 8 16
TEAPOT 12 8 8 8 8 | 65| 57| 41| 3.7
TETRA 9 80 | 80 | 80 | 80 | 55 | 38 | 30 | 23
GENS 140 | 140 | 140 | 140 | 40 | 30 | 22 | 17
BIG_GENS Memory overflow 250 | 240 | 200 | 170
Table 4

Memory requirements

11

4 Case study 2 : Adaptive mesh refinement for Computational
Fluid Dynamic simulation

Adaptive mesh refinement is a numerical technique that dynamically places
high resolution numerical grid in the region of a numerical simulation where
higher accuracy is needed [4]. The method is crucial in solving PDE’s where
large gradients and dynamic scales are present [Fig.5]. Problems in compu-
tational fluid dynamic exhibit such gradients and widely varying dynamics
(Euler or Navier-Stokes equations). Dynamically adaptive methods for solu-
tion of differential equations which employ locally optimal approximations
have been shown to yield highly advantageous ratios for cost/accuracy where
compared to methods based upon static uniform approximations. Adaptive
methods start with a base coarse grid with minimum acceptable resolution
that covers the entire computational domain. As the solutions progress, re-
gions in the domain requiring additional resolution are identified and finer
grid are generated on the identified regions of the coarse grid. Refinement
proceeds recursively for regions on the finer grid requiring more resolution;
to link computation inside one grid with outside it is necessary to introduce
virtual cells at the grid boundary; the size of this belt of cells depends of the
equations to be solved. The virtual cells are initialised then a grid can be
integrated within a time step independently with others grids.

Lazy evaluation will be used to define the adaptive data structure; like with
the previous example the data structure is a tree dynamically built. Nodes of
the tree represent grids at a particular level with three different status:

(1) Constant :The grid contains constant values which are already computed
(2) Leaf : The grid has to be refined and its child grid are not yet built
(3) Node : The grid has been refined and its child grid are already built

Lazy evaluation will allow a leaf grid to be transformed into a node grid. This
process is called grid evaluation. At the beginning of a simulation, the tree is
reduced to a single leaf grid. The tree will be actually built during the time
step evolution.

During the grid evaluation process, all the algebraic equations for the un-
knowns have to be calculated. A lazy process would delay those computations,
allowing some child grid to be fully computed and some others not.

Each time step, it is to be decided whether the grid description is sufficient
or not for an analytic computation. Usually this condition is based on error
estimation. If this condition is not reached, time integration is performed on
each component grid using a specified operator (Each component grid may
have its own operator and can be integrated independently) then the compo-
nent grids is advanced at a particular level of refinement in time. If the grid

12

is a leaf grid, it is evaluated in order to transform it into a node grid.

Contrary to methods using a static tree, most grids actually built were needed
by the calculus and no useless grid was built. This can result in memory saves
and also improve locality as refinement is applied locally.

A recursive formulation of the adaptive method is the following [5] :

Amr (level 1, time dt)
if (is_regrid_time(l)) then // true if the grid is a leaf
Refine level(1)
end if
if (is.non_plus_fin) then // true if the grid is a node
Creer_CL_niveau_fin(l) // create virtual cells
end if
Init_CL_niveau(l) // initialise virtual cells
Integrer Niveau(l, dt) // time integration
if (Is-non_plus_fin) then
for k=1..r do
Amr(1+1, dt/r)
Corriger flux_niveau(l) // conservative correction scheme
Projeter niveau_fin(l) // update level 1 with value computed on level 141
end for
end if

end

The primary source of parallelism in adaptive method is data-parallelism that
can be exploited by decomposing the computational grid across the process-
ing elements and concurrently operating on the local portion of this domain.
Different decomposition methods have to be defined to optimise computation
time and load balancing.

The base grid is created using specified bounding box information representing
region in the computational domain. The server decomposes this bounding box
into blocks with granularity greater than an architecture specific minimum.
A sufficient number of blocks are generated so that they can be uniformly
distributed among the available processors. The associated data-storage is
created on each processor as the first level. The integration algorithm defines
inter-grid communications between component grids at different level of the
grid hierarchy; with the lazy tree these communications are local to each block
and hence can be performed without any remote access.

Integrer_Niveau (level 1, time dt)
for all grids at level | do
Calculer flux //compute flows between cells

13

Evoluer_solution(dt) //advance computation with flows
Sauver flux_fin //save flows to finer level
Sauver_flux_Grossier //save flows to upper level
end for
end

Preliminary evaluation shows that the lazy algorithm has no significant over-
head and allows to compute problems with one order of magnitude in size
compared to methods based upon static uniform approximation [5]. The re-
sulting partitions of the adaptive grid hierarchy require no communications
during one time step. Several grid distribution algorithms are under evalua-
tion to optimise the load balancing and the final execution time on clusters
and metacluster architectures.

5 Conclusion

Efficient parallel solutions on distributed computers must reduce communica-
tions to the minimum, as they constitute a very important overhead. Dynamic
hierarchical data structures and lazy evaluation leads to a natural memory
repartition among computing nodes implying improvement in data localities
and reducing dramatically the need of communication. Laziness has two fun-
damental advantages allowing creation of data at right time and at right place
in the local memory of the processor that need effectively the data. Non lazy
algorithms made data reservation at compile time or during the initialisation
phase that may create useless data structures. However laziness could imply
redundancy in distributed memory, as part of the data and computation could
be duplicated, compared to global memory allocation and distribution, but it
is the cost to be paid to have an efficient computation of large simulation on a
distributed memory multiprocessor. Experiences have shown that this cost is
negligible compared to the cost to access remote global memory through high
bandwidth, low latency networks.

References

[1] David E. Culler and J.P. Singh, Parallel computer Architecture (Morgan
Kaufmann Publishers Inc., 1999).

[2] P. Sainrat and B.Lecussan, L’architecture du noeud de la grappe : état
de lart et prospective (Ecole d’hiver iHPerf2000 : Applications Hautes
Performances). Analyse, Conception et utilisation des grappes homogeénes

14

ou hétérogénes de calculateurs — (4-8 Décembre 2000 Aussois- France
http://www.irisa.fr/iHPerf2000/documents.html).

[3] S. Bermes, B. Lecussan, C. Coustet MaRT : Lazy Fvaluation for Parallel Ray
tracing (High Performance Cluster Computing, Vol 2, Prentice Hall 1999).

[4] Manish Parashar and James C. Browne On partitioning Dynamic Adaptive Grid
Hierarchies (HICSS-29, January 1996).

[] L. Le Saint et N. Hardouin FEtude et implémentation d’une stratégie
d’enrichissement automatiques de maillages structurés : Application auzx
équations d’FEuler (Projet d’Initiation & la Recherche - Supaero, Juin 2001).

15

