
Fundamental parallel program issues toimprove parallel computationsB. Lecussan, O. PoitouSupaero and ONERA/DTIM, 10. av. E. Belin, 31055 Toulouse cedex, FRANCEflecussan, poitoug@cert.fr, http://www.supaero.fr/lecussanAbstractThe parallel techniques to improve computer performances form the common baseto the evolution of the processors and the modern information processing systems.Performance improvement of a multiprocessor led to consider two complementaryactions to face latencies; �rst is latencies reduction by mechanisms of replicationwhich will involve requirements in memory bandwidth, data coherence and con-sistency protocols, then is residual latencies tolerance by overlapping techniques ofcomputation and communications. The computation/communication ratio is the es-sential parameter of the e�ectiveness of the multiprocessor computers; near futuretechnologies makes it possible to carry out locally 10.000 sequential instructionsduring the necessary time to send the �rst bit of a message from a transmitter to-wards a receiver. It is probable that the gap between the cycle time of the processorand the memory cycle continue to widen then requiring techniques to decrease andtolerate latencies of memory accesses; consequently the pressure is put on the band-width of the memory hierarchy. The programmer must know the consequences ofthe parallel paradigms that it uses to distribute computation on a set of processors(or on a set of clusters of processors) and to ensure himself (herself) the parallelprogram e�ciency. Whatever the technological development, the implementationmodels of parallel programming will remain confronted with the problems of thedata accesses, the execution scheduling of the various computations and the syn-chronisation techniques. This paper will discuss the fundamental parallel programissues to improve parallel computations and presents an algorithmic technique thatleads to a natural memory distribution among the computing nodes implying betterlocality and a lot less communications compared to conventional approaches.1 IntroductionThe parallel techniques to improve the computer performances form the com-mon base to the evolution of the processors and the modern informationPreprint submitted to Elsevier Science 26 November 2001



processing systems. The parallelism is found inside the processor, which is ablesimultaneously to treat on average 2.5 instructions per clock cycle (1Ghz) byexploiting several functional units. It is the domain of the processors designersand compilers manufacturers to generate codes exploiting these resources aswell as possible. The mother boards of today computers contain two or fourprocessors which can be managed e�ectively by a multithreaded operatingsystems to obtain an acceptable e�ciency of the parallel computer; paral-lelism is then, essentially, with the responsibility of the operating system. Thesystems with more than eight processors and up to 48 are currently presentin all high performance servers, for computations or data management. Themanagement of this parallelism is then the responsibility of the user who mustproduce an e�ective parallel program to exploit these resources as well as pos-sible. To understand the key factors of a parallel application performance ona multiprocessor we have to examine the time spent in each component of thecomputer to carry out several threads of instructions, namely the access tothe data of the memory hierarchy and the co-ordination of the activities withthe other processors. The execution time (1) of a sequential program can besummarised by the following formula:Ts = N � CPI � tc+ Tam (1)N the total number of instructions executed by the processorCPI the average number of Cycle Per InstructionsTc the processor cycle timeTam memory hierarchy access timeOn a parallel architecture, the execution time (2) includes �ve parameters,which are:Ti=Ni�CPIi�tc the sequential computation time inside the i-th processorOpar(i) the overhead introduced by parallel tasksTam(i) the access time to local memory hierarchyRTam(i) the access time to remote memory hierarchySync(i) the synchronisation overhead between parallel tasksThen, the computation speed-up of the parallel program (p) obtained by amultiprocessor is:Speed� up(p) = Tsmax(T i+Opar(i) + Tam(i) +Rtam(i) + Sync(i)) (2)The performance improvement for the single processor consists in reducingthe access time to the hierarchy memory (Tam) and in improving the valueof CPI by bringing more than one instruction by cycle in the processor (two,four even eight instructions per cycle); the e�ectiveness of a multiprocessor ismore complex, the challenge covering three aspects:2



(1) characteristics of the bare machine leading to a minimum computationgranularity, the cost of synchronisation primitives, the memory band-width, the data coherence and consistence protocol management(2) characteristics of the application summarised by the frequency of theexchanges, the load balancing on each processor(3) de�nition of an analytical model which makes it possible for the program-mer to predict the performances of the parallel application.[1]The programmer must know the consequences of the parallel paradigms thatit uses to distribute computation on a set of processors and to ensure himself(herself) of the parallel program e�ciency. In shared memory this is di�cultbecause all costs are masked, in particular data coherence and consistencyprotocol costs that can induce very signi�cant latencies. In distributed mem-ory, the problem is simpler but a remote access cost is such as the parallelprogram must produce the least possible number of messages, especially shortmessages.For multiprocessors, the initial model PRAM becomes insu�cient because itdoes not allow interacting with performance. The speed-up formula (2) showsthat the output of the parallel machine is related to parameters that it is ad-visable to take into account at application design time and when writing theparallel program. The value of Opar(i) is incompressible and corresponds tothe additional code with the sequential program to make it parallel; Tam(i)contains the latency of the access to the local data, Rtam(i) represents the la-tency of the access through a communication network and Sync(i) contains thesynchronisation costs so that the parallel application is semantically correct.Performance improvement of a multiprocessor led to consider two complemen-tary actions to face latencies:(1) Latencies reduction by mechanisms of replication which will involve re-quirements in memory bandwidth and data coherence and consistencyprotocols(2) Residual latencies tolerance by overlapping techniques of computationand communications which will involve exchanges of memory blocks withzero copy, anticipations of communication and switches to parallel threads[2].The latency reduction can take place on three levels:� Reduction in the access times to each level of the hierarchy memory andthe communicationThe cache controller must answer very quickly to detect a cache miss and toreduce the latency of access at the higher level. The objective is to minimisethe following formula:Tam = Hitrate�Hittime+ (1 �Hitrate)�Misstime (3)3



For �rst level cache with hit ratio higher than 95% the Miss time may be20 times the Hit time and for lower-level cache it will still be an order ofmagnitude. This encourages the designer to increase the hit ratio in partic-ular by increasing the size of the lines of cache and to improve data cachelocality. The network interface must be strongly coupled with the node ofcomputation and be designed to format, deliver and manage quickly thetransactions on the network. Time to transfer N bytes from an emitter (E)towards a receiver (R) has four components:T (n)E R = Overhead+RoutingDelay+ChannelOccupancy+ContentionDelay (4)Overhead is the time taken by the processor to deposit a message in thecommunication interface.Routing is the time to transmit the �rst bit of a message towards a receiver.Channel Occupancy is a function of the communication medium, of thenumber of control information inside a packed and of the time to applycontrol signals to carry out an exchange between two switches.Contention Delay expresses that one message may collide with others andcontend for resources.With the three �rst parameters the network can be seen like a simplepipeline with a cost of initialisation, a depth and a processing time per stage.The strategies of commutation and routing change the e�ective structureof the pipeline whereas topology, the bandwidth of each link and the frag-mentation of the message determine the depth and time by stage. Howevera message can enter in collision with another and require shared resources(bu�ers). Application then represents an additional overhead that ensuresthat at every moment a channel is occupied by one and only one message.The application adds times to the basic routing time.� Structuring the system to reduce the frequency of the high latency accessesThe cache mechanism is the basic component to bring closer the data of theoperator who consumes them. This mechanism exploits the space localityand the temporal locality of the programs. The localisation of the data isthen uncoupled from its physical address; this architecture authorises a mi-gration of the data adapted to a management of the dynamic loads of a setof processes.� Structuring the application to reduce the frequency of the high latencyaccessesThis point is the responsibility of the application designer: it consists tobreak up and allocate computation with the processor in order to reducethe communications and to improve the space and temporal localities [2].4



By example, dynamic memory allocation and data structures constructionas late as possible during the program computation is a way to be taken.Development of this technique on cases studies is explained in this paper.Part2 will present fundamental parallel program issues to improve parallelcomputer speed-up, part 3 and part 4 describes two case studies based onlazy construction of program data structures reporting basic results.2 Fundamental parallel program design issuesThe computation/communication ratio is the essential parameter of the ef-fectiveness of multiprocessor computers; current technology makes it possibleto carry out locally 10.000 sequential instructions during the necessary timeto send the �rst bit of a message from a transmitter towards a receiver. Therestrictive factor of the formula (4) is the Overhead. Certain predict that thisvalue can pass to 20.000 quickly even 100.000 when the processors have severalhundreds of million transistors. In 10 years, the processor clock frequency wasmultiplied by 10 and transistor number by microprocessor was multiplied by afactor 30; on another side DRAM cycle time was only improved of a factor 2.Thus, it is probable that the gap between the cycle time of the processor andthe memory cycle continue to widen then requiring techniques to decrease andtolerate latencies of memory accesses; consequently the pressure is puton the bandwidth of the hierarchy memory. The interconnection band-width and the switches results in supporting exchanges with 1 Gigabits/s andup to 10 Gigabits/s, the optical �bre having to impose like the major supportfor high speed links, but these links are connected to I/O sub-systems whichbecome the bottlenecks of the multiprocessor. Whatever the technological de-velopment, the implementation models of parallel programming will remainconfronted with the problems of the data accesses, the execution schedulingof the various threads and the synchronisation techniques.As the issue addressed by this paper is the e�ciency of the distributed com-puter, the main parameters to be evaluated are the load imbalance of theparallel algorithm, the memory required by the solution on each processorand the speed-up gained by the parallel computation.Let the parallel computation time Tp expressed by the following formula:Tp = maxi ti (5)where i indexes the set of computers and ti is the i-th computer computationtime. 5



The parallel computer e�ciency E using p processors is:E = Tsp � Tp (6)where Ts is the best sequential algorithm to solve the problem.A minimumof the computation imbalance occurs when all computers completetheir work at the same time. In this case, this minimum occurs at:Tmin = Tseq + Tparp (7)where Tseq and Tpar respectively are the non-parallel and the parallel partof the computation time. This suggests an objective function to measure thee�ectiveness of any candidate solution sto any instance of the load-balancingproblem. The quality of s can be measured by the ratio of imbalance that itproduces and can be expressed by the following formula:Load imbalance = Tp � TminTmin (8)The evaluation of E (6), then the evaluation of the Load Imbalance (8), andthe amount of required memory to implement the solution will demonstratethe e�ciency of the proposed solution.At a coarse grain, the parallel algorithm behaviour is:Part 1: Initialise data and initiate the parallel executionPart 2: Distribute the whole computationPart 3: Compute locally each task inside each processorPart 4: Write the output result and endPart 1 and Part 4 contribute to the Overhead (Opar) in formula (2). Part 2and Part 3 are concerned by load balancing strategies and computation timeevaluations. So the formula (7) applied to the parallel algorithm decompositionbecomes:Tmin = Tpart2+ TSpart3p (9)where TSpart3 is the execution time of Part3 on a uniprocessor computer. Thisformulation shows that, as the number of processors p increases, the e�ciency6



of the parallel computer is very sensitive to the value of Tpart2. For example, thee�ciency of a computer with 100 processors drops to 0.5 if Tpart2 representsonly 1% of the total execution time. In this paper a solution to distributedata is presented in order to reduce signi�cantly the sequential part of thealgorithm.3 Case study 1 : a raytrace algorithm3.1 Raytracing oveviewRay tracing is a computational technique that can perform wave simulationat comparatively low costs. This technique can be applied in cases where thefrequency of the simulated wave can be adapted to the minimal object size.Ray tracing has been used for years in various �elds like image synthesis,seismic simulation, radar reections and others.A �rst algorithm will be used to spot the issue raised by the parallel ray-trace algorithm and will be referred to for the coming improved algorithmevaluations. The image is uniformly split into as many blocks as computingresources. The octree is entirely built at the beginning of the computation byeach node to avoid communication during this step. Each node hence has theentire model and voxelisation information in its local memory: so the com-putation is achieved without communication. The memory requirement foreach node is the same as on the single node of a sequential computer. Theonly positive aspect of this �rst trivial algorithm is that it does not need anycommunication.3.1.1 Improving load-balancing by a dynamic distribution of blocksTo deal with the irregularity of the raytrace algorithm, a �rst improvement isto achieve a thinner static splitting of the image and a dynamic distributionof blocks. The algorithm is:� At the master mode : Let N be the number of processorsSplit image(block size) // block size is set to obtain a large number of blocksfor i=1..N Assign(a Block, node (i)) // Assignment of the �rst N blockswhile non computed block remainsWait for a job terminationAssign(a new block, node (requester))end whilefor i=1..N Send(termination signal, node(i))7



� At each slave node :Wait for a job(job)while not the termination signalCompute(job)Send(job termination, master node)Wait for a job(job)end whileThis should improve the load balancing, but the local memory requirementproblem is not addressed yet.3.1.2 Saving memory, reducing computation and improving locality : the lazyraytrace3.2 The lazy algorithmAt the beginning of a simulation, i.e. before the �rst ray is cast, the octreeis reduced to a single leaf voxel. The octree will be actually built duringthe ray tracing process. Each time a ray hits a voxel, it is to be decidedwhether the polygon description of the voxel is su�cient or not for an analyticcomputation. If boundary condition is not reached, the intersection with allchild voxels along the ray path has to be computed. If the voxel is a leaf voxel,it is evaluated in order to transform it into a node voxel. So, the lazy octreeis a potentially in�nite tree. Contrary to method using a static octree, mostvoxels actually built were hit at least once by a ray, and no useless voxel wasbuilt. More detail on lazy construction of voxels could be found in [3].Inside each processor, the algorithm is the following:Propagate(rays)for each rayIntersection(ray,octree root)if (intersection 6= nil) thenApply Snell Descartes laws to determine secondary raysif (secondary rays 6= nil) thenPropagate (secondary rays)end ifend ifend forend Propagate 8



The algorithm of the lazy recursive function Intersection is:Intersection(ray,octree elt)//First step: Actions on the octree element if it is a leafif is a leaf(octree elt) thenif boundary conditions(octree elt) then //there is no need to explore deeperif (object list(octree elt)6=nil) then // the element contains surfacesFlag as terminal node(octree elt)else // the element contains no surfaceFlag as empty(octree elt)end ifelse //deeper exploration is necessaryFlag as node(octree elt)Create leaf sons(octree elt)end ifend if// Second step: Action to take according to the ag of the element as it can no more be a leafcase typeof(octree elt)empty: return(nil)node: if is a terminal node thencompute intersection;elsereturn merge(if hit by ray then Intersection(ray,son 1(octree elt) else nil,if hit by ray then Intersection(ray,son 2(octree elt) else nil,if hit by ray then Intersection(ray,son 3(octree elt) else nil,if hit by ray then Intersection(ray,son 4(octree elt) else nil,if hit by ray then Intersection(ray,son 5(octree elt) else nil,if hit by ray then Intersection(ray,son 6(octree elt) else nil,if hit by ray then Intersection(ray,son 7(octree elt) else nil,if hit by ray then Intersection(ray,son 8(octree elt) else nil,end ifend caseend IntersectionThis algorithm shows the following properties: �rst, a child node is evaluatedonly if it contains necessary data for the computation; then, the node evalua-tion results is de�nitively stored in the octree and will be reused for neighbourray computation. Thereby, the algorithm exploits spatial ray coherence.The main drawback of the algorithm is the remaining data replication. Toreduce this undesirable replication, neighbour ray's coherence hypothesis is9



taken. It states that neighbour rays have a high probability to cross a lotof common voxels and only few di�erent voxels. A proximity support in theassigned ray choice for each node is so achieved to minimise data replicationphenomenon. Nevertheless some rays assigned to di�erent nodes may needcommon voxel evaluation and generate data replication.3.3 Lazy raytrace algorithm performance resultsResults were obtained using 16 Sun Ultra 10 with 256 MB of memory inter-connected by an Ethernet 100 Mb/s network. MPI1.1 was used to distributethe computation. Benchmarks come from very well known images (Teapot12and Tetra9) and proprietary scenes to extend computation complexity [Tab.1].SCENE MODEL NB OF PICT. SEQUENTIAL TIMESNAMES SIZE SURF. SIZE STANDARD LAZYTEAPOT 12 1.19 MB 9,408 2048X2048 220s 163sTETRA 9 18.24 MB 262,144 2048X2048 194s 155sGEN8 26.21 MB 786,438 1024X1024 793s 201sBIG GEN8 104.84 MB 3,145,728 2048X2048 mem overow 3,992sTable 1Test scenes overviewThe local memory requirement is the �rst point where laziness has a signi�cantimpact. The lazy version of the raytrace algorithm uses less memory as the nonlazy one; as the number of references to the memory hierarchy decreases thetotal computation time decreases dramatically. Huge computation (3 millionssurfaces, 2K by 2K image) could not be computed on a single processor withconventional data management but has been computed with the lazy versionof the raytrace algorithm using a computer with 256 MB of memory in aboutone hour.E�ciency is in the range [1..0.93] for small scene [Tab.2] as the numberof processors increases. For medium size image e�ciency is in the range of[1..0.61] and is always better with the lazy algorithm.With the non lazy implementation of the raytrace algorithm each node hasthe entire model and voxelisation data in its local memory; so the computa-tion is achieved without communication but the local memory requirement isconstant and maximum whatever the number of nodes is. The measured ef-�ciency of this algorithm shows that global computation time gets far higherthan desirable as the number of nodes increases showing an important loadimbalance between nodes [Tab.3]. 10



EFFICIENCY NON LAZY LAZYNb of PE's 2 4 8 16 2 4 8 16TEAPOT 12 0.9 0.8 0.75 0.6 0.98 0.97 0.95 0.93TETRA 9 0.82 0.6 0.3 0.3 0.9 0.76 0.7 0.61GEN8 0.6 0.71 0.68 0.5 0.97 0.9 0.8 0.64BIG GEN8 Memory overow 0.98 0.97 0.97 0.95Table 2Algorithm e�ciencies (Eq.6)LOAD IMBALANCE (in %) NON LAZY LAZYNb of PE's 2 4 8 16 2 4 8 16TEAPOT 12 15 22 40 60 0.5 1.2 2.2 2.8TETRA 9 15 60 220 240 11 40 42 52GEN8 60 40 50 95 5 10 22 55BIG GEN8 Memory overow 2 8 10 13Table 3Algorithm load imbalance ratio (eq.8)The memory requirement decreasing rate is about 25% each time the numberof nodes doubles [Tab.4]. The memory is now distributed among the computingnodes thanks to the laziness added to the base algorithm. On the GEN8 testa memory saving can be observed with the sequential lazy computation; itcome from important useless parts of the octree that is evaluated by the classicalgorithm and not by the lazy algorithm. The speed-up obtained on the GEN8test is equal to 15 with 16 processors and for the huge test BIG GEN8 is 31with 32 processors and the memory is well distributed among each processor.MEMORY NEEDS (MB) NON LAZY LAZYNb of PE's 2 4 8 16 2 4 8 16TEAPOT 12 8 8 8 8 6.5 5.7 4.1 3.7TETRA 9 80 80 80 80 55 38 30 23GEN8 140 140 140 140 40 30 22 17BIG GEN8 Memory overow 250 240 200 170Table 4Memory requirements 11



4 Case study 2 : Adaptive mesh re�nement for ComputationalFluid Dynamic simulationAdaptive mesh re�nement is a numerical technique that dynamically placeshigh resolution numerical grid in the region of a numerical simulation wherehigher accuracy is needed [4]. The method is crucial in solving PDE's wherelarge gradients and dynamic scales are present [Fig.5]. Problems in compu-tational uid dynamic exhibit such gradients and widely varying dynamics(Euler or Navier-Stokes equations). Dynamically adaptive methods for solu-tion of di�erential equations which employ locally optimal approximationshave been shown to yield highly advantageous ratios for cost/accuracy wherecompared to methods based upon static uniform approximations. Adaptivemethods start with a base coarse grid with minimum acceptable resolutionthat covers the entire computational domain. As the solutions progress, re-gions in the domain requiring additional resolution are identi�ed and �nergrid are generated on the identi�ed regions of the coarse grid. Re�nementproceeds recursively for regions on the �ner grid requiring more resolution;to link computation inside one grid with outside it is necessary to introducevirtual cells at the grid boundary; the size of this belt of cells depends of theequations to be solved. The virtual cells are initialised then a grid can beintegrated within a time step independently with others grids.Lazy evaluation will be used to de�ne the adaptive data structure; like withthe previous example the data structure is a tree dynamically built. Nodes ofthe tree represent grids at a particular level with three di�erent status:(1) Constant :The grid contains constant values which are already computed(2) Leaf : The grid has to be re�ned and its child grid are not yet built(3) Node : The grid has been re�ned and its child grid are already builtLazy evaluation will allow a leaf grid to be transformed into a node grid. Thisprocess is called grid evaluation. At the beginning of a simulation, the tree isreduced to a single leaf grid. The tree will be actually built during the timestep evolution.During the grid evaluation process, all the algebraic equations for the un-knowns have to be calculated. A lazy process would delay those computations,allowing some child grid to be fully computed and some others not.Each time step, it is to be decided whether the grid description is su�cientor not for an analytic computation. Usually this condition is based on errorestimation. If this condition is not reached, time integration is performed oneach component grid using a speci�ed operator (Each component grid mayhave its own operator and can be integrated independently) then the compo-nent grids is advanced at a particular level of re�nement in time. If the grid12



is a leaf grid, it is evaluated in order to transform it into a node grid.Contrary to methods using a static tree, most grids actually built were neededby the calculus and no useless grid was built. This can result in memory savesand also improve locality as re�nement is applied locally.A recursive formulation of the adaptive method is the following [5] :Amr (level l, time dt)if (is regrid time(l)) then // true if the grid is a leafRe�ne level(l)end ifif (is non plus �n) then // true if the grid is a nodeCreer CL niveau �n(l) // create virtual cellsend ifInit CL niveau(l) // initialise virtual cellsIntegrer Niveau(l, dt) // time integrationif (Is non plus �n) thenfor k=1..r doAmr(l+1, dt/r)Corriger ux niveau(l) // conservative correction schemeProjeter niveau �n(l) // update level l with value computed on level l+1end forend ifendThe primary source of parallelism in adaptive method is data-parallelism thatcan be exploited by decomposing the computational grid across the process-ing elements and concurrently operating on the local portion of this domain.Di�erent decomposition methods have to be de�ned to optimise computationtime and load balancing.The base grid is created using speci�ed bounding box information representingregion in the computational domain. The server decomposes this bounding boxinto blocks with granularity greater than an architecture speci�c minimum.A su�cient number of blocks are generated so that they can be uniformlydistributed among the available processors. The associated data-storage iscreated on each processor as the �rst level. The integration algorithm de�nesinter-grid communications between component grids at di�erent level of thegrid hierarchy; with the lazy tree these communications are local to each blockand hence can be performed without any remote access.Integrer Niveau (level l, time dt)for all grids at level l doCalculer ux //compute ows between cells13



Evoluer solution(dt) //advance computation with owsSauver ux �n //save ows to �ner levelSauver ux Grossier //save ows to upper levelend forendPreliminary evaluation shows that the lazy algorithm has no signi�cant over-head and allows to compute problems with one order of magnitude in sizecompared to methods based upon static uniform approximation [5]. The re-sulting partitions of the adaptive grid hierarchy require no communicationsduring one time step. Several grid distribution algorithms are under evalua-tion to optimise the load balancing and the �nal execution time on clustersand metacluster architectures.5 ConclusionE�cient parallel solutions on distributed computers must reduce communica-tions to the minimum, as they constitute a very important overhead. Dynamichierarchical data structures and lazy evaluation leads to a natural memoryrepartition among computing nodes implying improvement in data localitiesand reducing dramatically the need of communication. Laziness has two fun-damental advantages allowing creation of data at right time and at right placein the local memory of the processor that need e�ectively the data. Non lazyalgorithms made data reservation at compile time or during the initialisationphase that may create useless data structures. However laziness could implyredundancy in distributed memory, as part of the data and computation couldbe duplicated, compared to global memory allocation and distribution, but itis the cost to be paid to have an e�cient computation of large simulation on adistributed memory multiprocessor. Experiences have shown that this cost isnegligible compared to the cost to access remote global memory through highbandwidth, low latency networks.References[1] David E. Culler and J.P. Singh, Parallel computer Architecture (MorganKaufmann Publishers Inc., 1999).[2] P. Sainrat and B.Lecussan, L'architecture du noeud de la grappe : �etatde l'art et prospective (Ecole d'hiver iHPerf2000 : Applications HautesPerformances). Analyse, Conception et utilisation des grappes homog�enes14



ou h�et�erog�enes de calculateurs (4-8 D�ecembre 2000 Aussois- France :http://www.irisa.fr/iHPerf2000/documents.html).[3] S. Bermes, B. Lecussan, C. Coustet MaRT : Lazy Evaluation for Parallel Raytracing (High Performance Cluster Computing, Vol 2, Prentice Hall 1999).[4] Manish Parashar and James C. Browne On partitioning Dynamic Adaptive GridHierarchies (HICSS-29, January 1996).[5] L. Le Saint et N. Hardouin Etude et impl�ementation d'une strat�egied'enrichissement automatiques de maillages structur�es : Application aux�equations d'Euler (Projet d'Initiation �a la Recherche - Supaero, Juin 2001).

15


